National Repository of Grey Literature 16 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Breakdown Voltage Measurement of Solid and Liquid Dielektric Materials
Ryšavý, Tomáš ; Pelikán, Luděk (referee) ; Krbal, Michal (advisor)
This thesis aims to theoretically describe the formation of electric breakdown in solid and liquid dielectric materials and subsequently focuses on the measuring itself. In addition to describing the standardized procedure of electrical breakdown or breakdown voltage of dielectric materials, this paper also focuses on the most important parameters and conditions that affect the electric strength of materials. This thesis also includes designs of electrode systems and test chambers for measuring solid and liquid dielectrics.
Diagnostics of electric discharges in liquids
Vašíček, Michal ; Mazánková, Věra (referee) ; Kozáková, Zdenka (advisor)
The main scope of this thesis is to measure electrical characteristics of a DC discharge in an electrolyte solution in order to evaluate individual discharge parameters (voltage, current, emitted light and sound). As a result of these parameters, a comparison between a diaphragm and capillary configuration has been realized using static and dynamic characteristics. Next part of this thesis is finding mutual differences and to set an approximate transition of individual configurations. For the study of the pin-hole discharge a polycarbonate reactor with total volume of 110 ml was used. It was divided by a changeable polyacetal insulating wall. The Shapal ceramic discs (thickness of 0.3–1.5 mm and diameter of the central pin-hole of 0.3 mm) were mounted in the centre of the insulating wall. This wall divided the reactor into two approximately equal spaces with one stainless steel electrode in each part. A DC high voltage source providing constant power supply up to 500 W was applied on the electrodes. The water solution of NaCl with initial conductivity of 570 S/cm was used as electrolyte. Time resolved electrical characteristics were recorded by a four channel oscilloscope Tektronix TDS 2024B. Measured parameters were as follows: voltage (by a HV probe Tektronix P6015A), current at ballast resistor of 5.13 , sound detected by a piezzo-microphone mounted under the reactor, and light emitted by the discharge was detected by an optical fiber in vicinity of the orifice. Measuring and processing of time resolved electrical characteristics present an accurate description of behavior of the diaphragm and capillary configuration. Voltage differences during the phase of bubble formation as well as around the breakdown point were discussed. This thesis contains a description of bubble cavitation and sets transition ratio between the diaphragm and capillary configuration approximately to l/d= 3 (where l is thickness of the wall and d is diameter of the pin-hole).
Diaphragm discharge in organic dye solutions with focus on electrolytic decomposition
Davidová, Jaroslava ; Brablec, Antonín (referee) ; Kozáková, Zdenka (advisor)
This Diploma thesis is focused on physical and chemical effects which contribute to the decomposition of organic dyes by diaphragm discharge generated in water solutions. Due to the application of DC high voltage source in continuous regime, there is an effect of electrolysis contributing to the dye decomposition by diaphragm discharge. The aim of this work was to find out when the electrolysis is running (or when is the moment of discharge breakdown) and which factors influence the breakdown. The other goal was decomposition of selected textile and food organic dyes by electrolysis itself. In the theoretical part, theory about creation of electrical discharges in aqueous solutions is noted and various types of underwater discharges are described. Background researches about underwater electrical discharges used in the world are mentioned as well as the use of diaphragm discharges and various ways how to remove organic dyes from wastewater. Finally, theories of electrolysis, UV-VIS spectroscopy and basis of other analytical methods useful for detection of organic molecules are described. Experimental part is oriented to experiment procedure which was carried out in a reactor with separated electrode areas. Separation was made by dielectric diaphragm with a pinhole in the centre. Its initial diameter was 0.4 mm. Used chemicals and course of experiments are described in this part, too. First, the breakdown moment in the reactor was investigated (i. e. determination, when only electrolysis was operating) by formation of hydrogen peroxide and measurement of dynamic (time resolved) electrical characteristics. Next, decomposition of selected dyes by electrolysis was carried out. As the decomposition was related to decolorization of the solution, UV-VIS spectroscopy in the range of 350–700 nm was used for determination of dye concentration. Next part focused on results presents various factors which had an effect on breakdown of diaphragm discharge. These factors are kind of used electrolyte, initial conductivity of solution, kind of dye, temperature of solution and type of reactor (or solution volume). From the result, the most important factor is initial solution conductivity. After the determination of the breakdown moment, the electrolysis of organic dyes was performed. The applied current was 10 mA, initial conductivity was 500 µS/cm and used electrolyte was NaCl. Moreover comparison of dye decomposition in dependence on the different applied power was realized. From this comparison one can assume, there is no significant contribution of electrolysis (the efficiency is approximately 15 %) to the diaphragm discharge in aqueous solution.
Electric characteristics of the diaphragm discharge in electrolyte solutions
Dřímalková, Lucie ; Slavíček, Pavel (referee) ; Kozáková, Zdenka (advisor)
The main object of this thesis is the diagnostics of the diaphragm discharge generated in water solutions containing supporting electrolytes (mostly NaCl), and description of particular processes before and after discharge breakdown by DC non-pulsed voltage up to 2 kV. Although many applications of electric discharge in liquids have been developed during the last years, the exact mechanism of the discharge ignition is not sufficiently known up to now. Based on this reason, this work is focused on the investigation of processes before the discharge ignition, breakdown parameters and the discharge itself both in the irregular and stable regime. The theoretical part of the work presents proposed mechanisms of the discharge generation in water solutions including the description of particular kinds of known discharges. Diaphragm discharge is one of many possible configurations of electrical discharges in liquids. In fact, electrical discharge in water forms non-thermal plasma, which is generated by high voltage, and many physical and chemical processes are started in plasma channels (so-called streamers). Among physical processes, high electrical field, shock waves and last but not least emission of electromagnetic radiation in visible and ultra-violet radiation belongs. The most important chemical processes are generation of various active species as hydrogen peroxide, and OH radical. Three batch plasma reactors using a diaphragm configuration with different total volume (4 l, 100 ml and 50 ml) are employed in the presented work. The discharge is created in an orifice (a pin-hole) in the dielectric barrier separating two electrode parts of the reactor. DC non-pulsed high voltage up to 4 kV is used for the discharge generation. Electrodes are made of stainless steel or platinum, and they are installed in parallel to the diaphragm in a variable distance from the dielectric barrier in each reactor part. The dielectric barrier is made of PET or Shapal-MTM ceramics with the variable thickness (0.2?2 mm). One pin hole st the diaphragm center with diameter of 0.2?1.5 mm are used in contemporary experiments. Time resolved characteristics of current and voltage are recorded using four-channel oscilloscope which detected their output values. Parameters are measured by the constantly increasing DC voltage with a step of 100 V. The solutions containing sodium chloride electrolyte are used at five different conductivities. Recorded time resolved characteristics determine breakdown moment, and describe current and voltage in particular parts within the static current-voltage curve. The breakdown appeared at lower applied voltage when the electrode distance is enhanced. However, the electrode distances higher than 4 cm does not induce any significant change of the breakdown voltage. The influence of pin-hole diameter is less obvious in the studied range, but a slight enhancement of breakdown voltage is observed with the increasing pin-hole diameter. Current-voltage characteristic curve moves towards lower voltage with the diaphragm thickness enhancement. The work compares the influence of conductivity change on current-voltage characteristics as well as the effect of inorganic salt kind. By the conductivity enhancement, the measured current-voltage curve moves towards lower voltage which means that the breakdown voltage is decreased. Sizes of the reactors do not have any effect on the processes before and after discharge breakdown.
Plasma diagnostics of electric discharges generated in selected configurations in liquids
Vašíček, Michal ; Bartlová, Milada (referee) ; Kozáková, Zdenka (advisor)
My diploma thesis is focused on a comparison of direct-current and high frequency (15-80 kHz) electric discharge, which generates non-thermal plasma in water solution of sodium chloride. Mainly current-voltage and Lissajous charts are discussed in the first part of this thesis. These charts describe different discharge phases: electrolysis, bubble formation, discharge breakdown and discharge regular operation in a pin-hole of a dielectric barrier. Influence of frequency, electrolyte conductivity, thickness of the diaphragm (or length of the capillary) and pin-hole diameter on discharge breakdown and bubble generation was studied, too. Measurements were realized in a polycarbonate reactor with total volume of 110 ml, which was divided by a changeable polyacetal insulating wall. This wall divided the reactor into two approximately equal spaces with one stainless steel planar electrode in each part. The Shapal-MTM ceramic discs (thickness of 0.3–1.5 mm and diameter of the central pin-hole of 0.3-0.9 mm) were mounted in the centre of the insulating wall. Initial conductivity of sodium chloride solution was chosen within the interval of 100900 S/cm. The second part of my thesis compares an influence of the direct-current (DC) and high frequency (HF) power sources on physical solution properties (conductivity, pH and temperature) and generation of hydrogen peroxide. A plasma reactor with total volume of 4 l and with mixing set up was divided into two equal spaces with one planar platinum electrode in each part. Diaphragm with thickness of 0.6 mm and pin-hole diameter of 0.6 mm was installed in the middle of the separating wall. Experiment was held at discharge operation of 45 W for 40 minutes with both power sources. Detection of hydrogen peroxide was realised by using a titanium reagent forming a yellow complex, which was analysed by absorption spectroscopy. If HF discharge power is plotted as a function of applied frequency, exponential decrease of frequency with increasing power can be observed. Higher breakdown voltage is necessary for thicker dielectric barriers, on the other hand for bigger diameter of the pin-hole lower breakdown voltage and higher power is needed in DC as well as in HF regime. Breakdown voltage is decreased by the increasing conductivity in both regimes; due to more charge carriers in the higher conductivity lower breakdown voltage is needed. However frequency in HF regime and DC discharge power increases. HF discharge power is decreased by the increasing conductivity. Solution conductivity and temperature are increased by initial conductivity value in both discharge regimes. Solution pH drops to acidic conditions when HF or DC positive regime is applied due to the generation of reactive species and electrolysis (in DC regime). However solution becomes alkaline when DC negative regime is applied. Concentration of hydrogen peroxide is produced linearly when HF or DC negative regime is applied and it depends on initial solution conductivity.
Diagnostics of plasma generated by electrical discharge in organic solutions
Adámková, Barbora ; Krčma, František (referee) ; Kozáková, Zdenka (advisor)
This work deals with electrical discharge in organic solutions. The theoretical part was focused on plasma discharge in liquids and also plasma diagnostics. In the experimental part the influence of experimental conditions on the ignition of the discharge in alcohols was observed. Especially, the polarity of the applied voltage, concentration and conductivity of the solution was studied. Moreover, the amount of generated hydrogen peroxide in the ethanol solutions as well as the electrolyte solution of two different conductivities was determined. The results compared the current-voltage characteristic curve during the stable discharge and the phases that preceded it. These phases were the creation of bubbles, occasional ignition and stable discharge. From the recorded average values of current and voltage, current-voltage characteristics were constructed. It was found, that the increasing conductivity of the solution leads to an earlier discharge. In case of negative polarity of the voltage input on the main electrode, there was an earlier discharge than in the positive polarity. Voltage value necessary for the discharge ignition was lower by several hundred volts in the negative polarity. For example, for a solution of 95 vol. % ethanol and conductivity of 200 S, the breakdown voltage for a positive polarity was determinated as 1650 V but at negative polarity this voltage was only 1250 V. Moreover the influence of ethanol concentration on the ignition of the discharge was found, but there was no significant effect. Amount of generated hydrogen peroxide grew linearly with time. In the electrolyte solution, hydrogen peroxide was formed significantly more in comparison to the ethanol solution.
Dynamic testing of solar cells
Šneidr, Radim ; Hégr, Ondřej (referee) ; Boušek, Jaroslav (advisor)
The content of this thesis is the validation of the method of dynamic testing of solar photovoltaic cells. Testing methods for determining the parameters of the photovoltaic cell replacement scheme has been verified through testing a set of crystalline silicon photovoltaic cells. To accelerate the diffusion capacity measurement and to improve reproducibility of the measurement we propose new method of determining the time constant for diffusion capacitance using a combination of two short pulses. For this method of measurement new scheme for dynamic tester timing has been proposed and implemented.
Diagnostics of Diaphragm Discharge in Water Solutions and its Application for the Nanomaterials Surface Treatment
Dřímalková, Lucie ; Brablec, Antonín (referee) ; Janda,, Mário (referee) ; Krčma, František (advisor)
The exact mechanism of the discharge in liquids ignition is not sufficiently known up to now. Although during the last years was achieved the great progress and overloading which some of them are written in this theoretical part of thesis. This thesis is divided into two experimental parts. When the first part deals with diagnostics of diaphragm discharge in electrolyte solutions and the second part is focused on its use for uncoiling (higher homogenization) of carbon nanotubes in solutions. In experiment 1, three different sized (4 l, 100 ml, 50 ml) diaphragm discharge configurations were used to diagnose diaphragm discharge in electrolyte solutions. Diagnostics is done through current and voltage waveforms with the addition of synchronized ICCD camera images that have been connected to a four-channel oscilloscope. The V-A characteristic can be described by three events occurring in the electrolyte solution with a gradual increase in voltage. Slowly increasing of the voltage in the solution leads first to electrolysis. The next phase is the formation of microbubbles or bubbles, which is characteristic of the curve by a slight decrease in the increase of the current passing between electrodes. The sudden increase in the current flow is characteristic of the last phase, namely the discharge phase. The distance of the electrodes from the diaphragm does not significantly affect the V-A characteristic. The higher diameter of the pin hole, therefore, has a higher voltage, but this does not affect the origin of bubble generation or breakdown. The higher thickness of diaphragm, the higher voltage is needed to the beginning of the bubbles generation, and consequently the discharge breakdown. Comparison of the voltage of the start generation of the bubbles and breakdown for PET diaphragms and diaphragms from the ceramic there was no mark able difference. One of the most important parameters is the conductivity of the electrolyte solution. The lower voltage is needed for the start generation of the bubbles at the higher solution conductivity, and also the discharge generation is observed at a lower breakdown voltage. The second experimental part is focused on the study of the diaphragm discharge effect on carbon nanotubes. A specially designed U-shaped reactor is used to modify carbon nanoparticles. Tap water and aqueous solutions of organic compounds are used as the electrolytic solutions. The discharge is generated by a non-pulsed DC high source with a voltage in the range of 0-2.8 kV supplied to platinum electrodes located in the electrolyte solution. The experimental results have shown that the diaphragm discharge has positive effects on the disintegration of clusters and agglomerates of carbon nanotubes. The primary effect on disintegration is probably the shock waves generated by the discharge. It turned out that it depends on the electrode configuration, where the treatment in anode space has far greater effects than the treatment in cathode half of the reactor. Effects of carbon nanotubes disintegration in solution are long-lasting and the treatment effect is not loosed after several months. There were detected no significant changes in the structure of plasma-treated nanotubes by Infra-red spectroscopy.
Breakdown Voltage Measurement of Solid and Liquid Dielektric Materials
Ryšavý, Tomáš ; Pelikán, Luděk (referee) ; Krbal, Michal (advisor)
This thesis aims to theoretically describe the formation of electric breakdown in solid and liquid dielectric materials and subsequently focuses on the measuring itself. In addition to describing the standardized procedure of electrical breakdown or breakdown voltage of dielectric materials, this paper also focuses on the most important parameters and conditions that affect the electric strength of materials. This thesis also includes designs of electrode systems and test chambers for measuring solid and liquid dielectrics.
Diagnostics of Diaphragm Discharge in Water Solutions and its Application for the Nanomaterials Surface Treatment
Dřímalková, Lucie ; Brablec, Antonín (referee) ; Janda,, Mário (referee) ; Krčma, František (advisor)
The exact mechanism of the discharge in liquids ignition is not sufficiently known up to now. Although during the last years was achieved the great progress and overloading which some of them are written in this theoretical part of thesis. This thesis is divided into two experimental parts. When the first part deals with diagnostics of diaphragm discharge in electrolyte solutions and the second part is focused on its use for uncoiling (higher homogenization) of carbon nanotubes in solutions. In experiment 1, three different sized (4 l, 100 ml, 50 ml) diaphragm discharge configurations were used to diagnose diaphragm discharge in electrolyte solutions. Diagnostics is done through current and voltage waveforms with the addition of synchronized ICCD camera images that have been connected to a four-channel oscilloscope. The V-A characteristic can be described by three events occurring in the electrolyte solution with a gradual increase in voltage. Slowly increasing of the voltage in the solution leads first to electrolysis. The next phase is the formation of microbubbles or bubbles, which is characteristic of the curve by a slight decrease in the increase of the current passing between electrodes. The sudden increase in the current flow is characteristic of the last phase, namely the discharge phase. The distance of the electrodes from the diaphragm does not significantly affect the V-A characteristic. The higher diameter of the pin hole, therefore, has a higher voltage, but this does not affect the origin of bubble generation or breakdown. The higher thickness of diaphragm, the higher voltage is needed to the beginning of the bubbles generation, and consequently the discharge breakdown. Comparison of the voltage of the start generation of the bubbles and breakdown for PET diaphragms and diaphragms from the ceramic there was no mark able difference. One of the most important parameters is the conductivity of the electrolyte solution. The lower voltage is needed for the start generation of the bubbles at the higher solution conductivity, and also the discharge generation is observed at a lower breakdown voltage. The second experimental part is focused on the study of the diaphragm discharge effect on carbon nanotubes. A specially designed U-shaped reactor is used to modify carbon nanoparticles. Tap water and aqueous solutions of organic compounds are used as the electrolytic solutions. The discharge is generated by a non-pulsed DC high source with a voltage in the range of 0-2.8 kV supplied to platinum electrodes located in the electrolyte solution. The experimental results have shown that the diaphragm discharge has positive effects on the disintegration of clusters and agglomerates of carbon nanotubes. The primary effect on disintegration is probably the shock waves generated by the discharge. It turned out that it depends on the electrode configuration, where the treatment in anode space has far greater effects than the treatment in cathode half of the reactor. Effects of carbon nanotubes disintegration in solution are long-lasting and the treatment effect is not loosed after several months. There were detected no significant changes in the structure of plasma-treated nanotubes by Infra-red spectroscopy.

National Repository of Grey Literature : 16 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.